Current Limiters based on Silicon Pillar un - gated FET for Field Emission Application
نویسندگان
چکیده
This research investigates the use of vertical silicon ungated field effect transistors (FETs) as current limiters to individuallycontrol emission current in a field emitter and provide a simple solution to three problems that have plagued field emission arraysemission current uniformity, emission current stability and reliability. The ungated FET is an high aspect ratio silicon pillar individually connected in series with silicon or carbon nanofiber (CNF) emission tip. The transistors were designed as high aspect ratio silicon pillars in order to achieve velocity saturation of carriers and obtain current source-like characteristics. Device and process simulations were initially conducted to solidify the derived analytical model and optimize design parameters. Devices were fabricated and characterized in the Microsystems Technology Laboratory. The main outcome of this study is that individual control of field emitter current is feasible using un-gated FETs based vertical Si pillars. Thesis supervisor: Akintunde Ibitayo Akinwande Title: Professor of Electrical Engineering and Computer Science
منابع مشابه
Ballistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2
Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...
متن کاملHighly scaled silicon field emitter arrays with integrated silicon nanowire current limiters
Field emitter arrays (FEAs) are a promising class of cold electron sources with applications in RF amplifiers, terahertz sources, lithography, imaging, and displays. FEAs are yet to achieve widely implemented because of serious challenges which have limited their viability in systems that require advanced electron sources. We identified four major challenges that posed significant barriers to t...
متن کاملRepresentation of a nanoscale heterostructure dual material gate JL-FET with NDR characteristics
In this paper, we propose a new heterostructure dual material gate junctionless field-effect transistor (H-DMG-JLFET), with negative differential resistance (NDR) characteristic. The drain and channel material are silicon and source material is germanium. The gate electrode near the source is larger. A dual gate material technique is used to achieve upward band bending in order to access n-i-p-...
متن کاملStrain Gated Bilayer Molybdenum Disulfide Field Effect Transistor with Edge Contacts
Silicon nitride stress capping layer is an industry proven technique for increasing electron mobility and drive currents in n-channel silicon MOSFETs. Herein, the strain induced by silicon nitride is firstly characterized through the changes in photoluminescence and Raman spectra of a bare bilayer MoS2 (Molybdenum disulfide). To make an analogy of the strain-gated silicon MOSFET, strain is exer...
متن کاملEffect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics
Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...
متن کامل